Parameter identification in Choquet Integral by the Kullback-Leibler divergence on continuous densities with application to classification fusion
نویسندگان
چکیده
Classifier fusion is a means to increase accuracy and decision-making of classification systems by designing a set of basis classifiers and then combining their outputs. The combination is made up by non linear functional dependent on fuzzy measures called Choquet integral. It constitues a vast family of aggregation operators including minimum, maximum or weighted sum. The main issue before applying the Choquet integral is to identify the 2 − 2 parameters for M classifiers. We follow a previous work by Kojadinovic and one of the authors where the identification is performed using an informationtheoritic approach. The underlying probability densities are made smooth by fitting continuous parametric and then the Kullback-Leibler divergence is used to identify fuzzy measures. The proposed framework is applied on widely used datasets.
منابع مشابه
Model Confidence Set Based on Kullback-Leibler Divergence Distance
Consider the problem of estimating true density, h(.) based upon a random sample X1,…, Xn. In general, h(.)is approximated using an appropriate in some sense, see below) model fƟ(x). This article using Vuong's (1989) test along with a collection of k(> 2) non-nested models constructs a set of appropriate models, say model confidence set, for unknown model h(.).Application of such confide...
متن کاملComparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملInformation Measures via Copula Functions
In applications of differential geometry to problems of parametric inference, the notion of divergence is often used to measure the separation between two parametric densities. Among them, in this paper, we will verify measures such as Kullback-Leibler information, J-divergence, Hellinger distance, -Divergence, … and so on. Properties and results related to distance between probability d...
متن کاملFuzzy c-Means with Quadratic Penalty-Vector Regularization Using Kullback-Leibler Information for Uncertain Data
A new solution concept: acceptable payoffs in the core via coalition formation Katsushige Fujimoto Inequalities for Choquet integral with respect to a submodular non additive measure Yasuo Narukawa, Vicenç Torra
متن کاملRock physical modeling enhancement in hydrocarbon reservoirs using Choquet fuzzy integral fusion approach
Rock physics models are widely used in hydrocarbon reservoir studies. These models make it possible to simulate a reservoir more accurately and reduce the economic risk of oil and gas exploration. In the current study, two models of Self-Consistent Approximation followed by Gassmann (SCA-G) and Xu-Payne (X-P) were implemented on three wells of a carbonate reservoir in the southwest of Ira...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011